small business software Archives - Page 2 of 7 - Striven

AI in ERP: Automating Business Communications

In the ever-evolving landscape of business, artificial intelligence (AI) is revolutionizing how companies communicate with their customers. By automating repetitive tasks and personalizing interactions, AI enhances both marketing and customer service functions, making them more efficient and effective. This post explores the transformative power of AI in business communication.

Marketing Communications

Personalized Content Creation

AI’s ability to analyze customer data has made personalized content creation not just possible but powerful. By generating unique content for email marketing campaigns, social media posts, and advertisements based on customer interactions, purchase history, and preferences, businesses are seeing higher engagement rates. Studies show that personalized emails can boost click-through rates by an average of 14% and conversions by 10%. 

For example, consider a customer named Jane who bought a tent two weeks ago. An AI system identifies her as a potential buyer for sleeping bags and sends her an email showcasing top-rated sleeping bags with a 10% discount. This timely, relevant offer leads Jane to make a purchase, demonstrating AI’s capability to target effectively.

Predictive Analytics for Targeting

AI excels at analyzing customer behavior and trends to predict future buying patterns. This enables businesses to target their marketing efforts more accurately, focusing on prospects most likely to convert. Efficient resource allocation in marketing can significantly increase return on investment. Amazon’s use of predictive analytics to suggest products to customers is a prime example of this strategy in action.

Automated Social Media Management

AI tools automate the scheduling and posting of social media content and analyze engagement to suggest optimal posting times and content types. This automation helps businesses maintain an active and effective social media presence with minimal manual effort. For instance, an AI-powered scheduling tool can analyze past post performance to suggest the best times to post for maximum engagement.

Chatbots for Lead Generation

AI-powered chatbots on websites and social media platforms can interact with visitors around the clock. They answer questions, provide information, and qualify leads, ensuring potential customers are engaged immediately, which increases the likelihood of sales conversions.

You can check out Striven’s AI Chatbot right here.

Example of AI-Powered Chatbot Interaction:

  1. Chatbot Integration: A business integrates an AI-powered chatbot into its website to greet visitors, offer assistance, answer FAQs, and guide users through the product catalog.
  2. Visitor Interaction: A visitor named Emma is greeted by the chatbot, which offers her options like “Browse Products,” “Custom Design Consultation,” or “Help with an Existing Order.”
  3. Lead Qualification: Emma chooses “Custom Design Consultation,” indicating interest in a custom piece of furniture. The chatbot qualifies the lead by asking about her preferences and budget.
  4. Capturing Lead Information: The chatbot captures Emma’s contact information and stores it in the CRM system after determining she is a qualified lead.
  5. Follow-Up and Conversion: A specialist contacts Emma to schedule a consultation, leading to a sale after designing her custom furniture piece. Sephora’s chatbot on Facebook Messenger is a great illustration of how a beauty brand can leverage chatbots to offer personalized shopping experiences.

Voice Search Optimization

With the rise of voice assistants, optimizing for voice search is increasingly important. AI helps businesses understand natural language queries and optimizes online content for voice search, enhancing visibility in voice search results. 

AI-driven Content Curation

AI curates and recommends content based on audience preferences and behaviors, keeping the content engaging and reducing the workload on marketing teams. Netflix’s recommendation system is a prime example of AI-driven content curation, using viewer preferences to suggest relevant TV shows and movies.

Customer Service Communications

AI Chatbots for 24/7 Support

AI-powered chatbots provide instant responses to customer inquiries at any hour, improving customer satisfaction by reducing wait times. These chatbots handle everything from simple FAQs to more complex issues and escalate the conversation to a human agent if needed. 

Sentiment Analysis for Customer Feedback

AI analyzes customer reviews, surveys, and social media posts to gauge sentiment. This insight helps businesses identify improvement areas and understand customer satisfaction levels.

Example of Sentiment Analysis in Action:

  1. Collecting Customer Feedback: A local restaurant encourages customers to leave reviews and complete surveys about their online ordering experience.
  2. Implementing Sentiment Analysis: The restaurant uses an AI tool to perform sentiment analysis on the feedback, determining overall sentiment and identifying specific discussion points like food quality or service speed.
  3. Analyzing the Feedback: The AI tool provides insights into customer satisfaction and areas needing improvement, such as delivery times.
  4. Taking Action: Based on the analysis, the restaurant partners with a more efficient delivery service to reduce wait times and improve its kitchen workflow.
  5. Monitoring Changes and Continuous Improvement: The restaurant continues to monitor feedback, and the sentiment analysis shows a positive shift, indicating successful improvements. Yelp’s use of AI in filtering reviews and identifying consumer sentiment is a useful reference here.

Automated Email Support

AI automates responses to common customer inquiries via email, ensuring timely responses. The system categorizes and prioritizes emails, directing more complex issues to the appropriate human agent. A notable example is Striven’s Workflows feature, which enables automated responses and scheduling tools, freeing up human agents for more complex tasks.

Personalized Customer Service

AI analyzes a customer’s history to provide personalized service recommendations and troubleshoot issues more effectively. For instance, if a customer frequently buys a specific product, the AI system can offer tailored advice or promotions related to that product.

Example of Personalized Customer Service Using AI:

  1. Setting Up the AI System: A boutique store specializing in sustainable fashion implements an AI-powered email management system to handle customer inquiries.
  2. Customer Inquiry: Sofia asks about returning a dress that doesn’t fit. The AI system identifies this as a return request and provides an automated, detailed response.
  3. Automated Response and Action: Sofia receives instructions on returning the product, information on the refund process, and a link to a prepaid shipping label.
  4. Escalation for Complex Issues: Another customer, Lucas, asks a complex question about material sourcing. The AI system escalates this to a human specialist in product sustainability.
  5. Continuous Learning: The AI system learns from each interaction, improving its ability to respond accurately and identify trends in customer inquiries. The personalized support provided by AI is evident in how Spotify uses AI to tailor music recommendations to individual tastes, enhancing user satisfaction..

Predictive Customer Service

AI predicts potential customer issues based on behavior and preemptively offers solutions. For example, if a subscription is about to expire, the AI system sends a reminder and offers renewal assistance. HP uses predictive analytics to detect potential issues in their printers and proactively provide support to customers, demonstrating how predictive customer service can work effectively.

By leveraging AI, businesses can transform their marketing and customer service functions, making them more personalized, efficient, and effective. This innovation allows businesses to stay ahead of the competition and foster stronger relationships with their customers.

AI in ERP: A Better Way of Staying Organized

With the advent of Artificial Intelligence (AI), the potential for optimizing accounting practices, document management, and operational procedures is being taken to a whole new level.

AI automates and optimizes complex tasks, ensuring accuracy and efficiency in financial operations. It streamlines document handling by intelligently organizing and analyzing content for better accessibility and consistency.

Additionally, AI boosts operational efficiency by predicting trends and optimizing supply chains, driving cost reductions and improving service delivery. This integration not only enhances daily operations but also provides strategic insights for sustained business growth.

Let’s dive in to some ways that your business can reap the benefits of AI in ERP software:

Simplifying Accounting Practices

AI technology offers a wide range of possibilities to transform and optimize accounting practices, especially for small and medium-sized businesses (SMBs) that might not have the same resources as larger corporations.

1. Smart Receipt Tracking and Expense Management

AI can simplify the tedious process of tracking receipts and managing expenses by automating data entry and categorization. By using smartphone apps integrated with AI, business owners can take photos of their receipts. The AI then automatically extracts relevant data (such as date, amount, and vendor) and categorizes the expense according to the business’s chart of accounts. This not only saves time but also reduces errors associated with manual entry, making expense reporting and tracking far more efficient and accurate.

2. AI-driven Cash Flow Forecasting

Understanding and predicting cash flow is essential for the survival and growth of any SMB. AI can analyze historical financial data, seasonal trends, and payment cycles to predict future cash flow accurately. This predictive analysis can help businesses anticipate cash shortages, plan for future investments, and make informed decisions about when to scale operations. Unlike complex financial models that require expert knowledge, these AI tools present their forecasts through user-friendly dashboards, making advanced financial planning accessible to non-experts.

3. Automated Accounts Receivable and Payable

AI can automate the process of managing accounts receivable and payable, improving efficiency and cash management. For receivables, AI systems can send automated invoice reminders to clients, track invoice payments, and even predict which clients are likely to pay late. On the payables side, AI can schedule payments to optimize cash flow, taking advantage of early payment discounts or avoiding late fees. This automation ensures businesses maintain healthy cash flow and spend less time on manual tracking and communication.

4. Enhanced Financial Decision Support

AI can serve as a financial advisor for SMBs by providing decision support based on real-time financial data analysis. For instance, AI can analyze spending patterns, identify areas where costs can be reduced, and suggest changes to pricing strategies based on market demand analysis. By offering insights that are easy to understand and act upon, AI helps business owners make smarter financial decisions without needing a background in finance or analytics.

5. Simplified Tax Compliance and Optimization

Tax compliance is often a complex and time-consuming process for SMBs. AI can simplify this by keeping track of tax regulations, identifying applicable tax deductions, and even preparing tax returns. By analyzing a company’s financial transactions in real-time, AI ensures that all financial activities are recorded in a tax-compliant manner, reducing the risk of errors or omissions that could lead to penalties. Additionally, AI can optimize tax strategies by analyzing the most tax-efficient ways to structure transactions and investments, ensuring businesses pay no more tax than necessary.

Simplifying Document Management & Organization

AI technology has the potential to significantly enhance document management and digital organization, particularly for small and medium-sized businesses (SMBs that may not have extensive resources to dedicate to these tasks.

1. Smart Document Categorization and Tagging

AI can automatically categorize and tag documents as they enter the system, using natural language processing (NLP) and machine learning algorithms to understand the content and context of each document. This process eliminates the need for manual sorting and filing, ensuring that documents are organized systematically and can be retrieved with ease. For example, an invoice can be instantly recognized as a financial document and tagged with relevant identifiers such as the vendor name, date, and amount, simplifying bookkeeping and financial management.

2. Intelligent Search and Retrieval

AI-enhanced search functionalities can transform how businesses access their digital documents. Instead of relying on exact file names or folder locations, users can search using natural language queries, such as “find the invoice from Vendor X in March,” and the AI system will retrieve the relevant documents. This capability significantly reduces the time spent searching for documents and improves productivity, as users can quickly find exactly what they need using intuitive search terms.

3. Automated Compliance and Record Keeping

AI can help SMBs navigate the complexities of regulatory compliance and record-keeping requirements. By understanding the specific compliance standards relevant to the business, AI can automatically classify, store, and manage documents in compliance with legal and industry-specific guidelines. This includes ensuring that sensitive information is stored securely, managing retention schedules to ensure documents are kept for the required periods, and automating the deletion of records that are no longer needed, thereby reducing legal risks and maintaining organizational efficiency.

4. Enhanced Collaboration and Version Control

AI can streamline collaboration on documents by managing versions and changes in real-time. It can track edits, suggest changes, and even predict potential conflicts between different versions of a document, ensuring that all team members are working on the most current version of a document, reducing confusion and improving the efficiency of collaborative projects. 

5. Predictive Document Organization and Prioritization

By leveraging AI’s predictive analytics capabilities, businesses can organize and prioritize documents and tasks based on urgency, relevance, and personal work habits. AI can analyze how users interact with different documents and tasks over time to predict which items will be most important on any given day. This personalized organization helps users focus on the most critical tasks, improving efficiency and reducing the cognitive load of managing a vast array of documents and information.

Streamlining and Automating Operations

From optimizing supply chains and streamlining HR processes to personalizing customer interactions, AI’s integration offers a multifaceted enhancement to how you can improve your daily business operations beyond the scope of accounting and document management: 

1. Supply Chain Optimization

AI within ERP systems can dramatically enhance supply chain management by predicting demand patterns and optimizing inventory levels. These tools analyze historical sales data and external factors like market trends and seasonal fluctuations to forecast future product demands, ensuring that businesses maintain optimal inventory levels. This not only reduces the risk of overstocking or stockouts but also helps in planning for procurement and production schedules more efficiently.

2. Human Resources Management

AI can streamline several HR processes from recruitment to employee retention. In recruitment, AI tools can parse through vast numbers of applications to identify the most suitable candidates based on predefined criteria. For employee management, AI can analyze employee performance data to help HR teams identify training needs and career development opportunities. This proactive approach in managing workforce needs helps in maintaining a well-organized and satisfied workforce.

3. Customer Relationship Management (CRM)

AI-enhanced ERP systems can transform CRM by personalizing customer interactions and improving service quality. AI tools can analyze customer data collected through various touchpoints to gain insights into customer preferences and behaviors. This information enables businesses to tailor their marketing strategies and customer service approaches, leading to higher customer satisfaction and loyalty. (You can read more about this topic on our next blog!)

4. Production Scheduling

In manufacturing, AI tools can optimize production schedules by analyzing machine availability, material supply, and workforce capacity. AI algorithms can predict the best production processes to minimize downtime and maximize output. This helps businesses ensure that production runs smoothly, meets deadlines, and maintains high levels of efficiency, all of which are crucial for staying competitive in fast-paced markets.

5. Maintenance Management

AI within ERP systems can also revolutionize maintenance management by predicting when machines or equipment are likely to fail or need servicing. Using predictive maintenance techniques, AI tools monitor equipment performance in real-time and alert managers to potential issues before they cause disruptions. This proactive approach minimizes downtime, extends the lifespan of machinery, and keeps operations running without unexpected interruptions.

Wrapping Up

AI’s role in modern business operations cannot be overstated. As we’ve seen, AI not only refines accounting and document management processes but also extends its capabilities to various facets of business operations, including supply chain management, HR, customer relations, production, and maintenance. 

By adopting AI-enhanced ERP solutions, businesses can not only stay organized but also gain a competitive edge through improved decision-making and operational efficiency. 

Embracing AI is not just about keeping up with technology trends; it’s about setting a foundation for sustainable growth and success in an increasingly complex business landscape.

AI in ERP: Financial Data Analysis and Risk Management

The application of AI in financial data analysis and risk management is reshaping how businesses forecast, identify, and mitigate financial risks. By delving into the specifics of AI’s impact on financial outcomes for businesses, we can reveal the tangible benefits that this technology brings to an ERP system. This exploration is grounded in real-world applications, data-driven results, and the scientific underpinnings that make AI an invaluable tool for financial professionals.

AI-Enhanced Financial Forecasting

One of the most significant advantages of AI in finance is its ability to improve forecasting accuracy. Traditional forecasting methods often rely on linear models that can miss complex patterns in historical data. AI, particularly machine learning models, can digest vast amounts of financial data to identify non-linear relationships and trends that humans or traditional statistical methods might overlook.

The vast repositories of data produced by ERP systems—encompassing sales, inventory levels, procurement costs, and more—provide a fertile ground for AI-driven analysis. However, without the application of AI and ML (Machine Learning) technologies, much of the potential insights that this data holds remain untapped. By channeling this wealth of information into sophisticated ML models, businesses can harness the full analytical power of their data, leading to forecasts that are not only more accurate but also more dynamically attuned to shifting market conditions and internal operational variables.

Benefit: Improved Accuracy in Revenue Projections

For example, a retail company employing machine learning algorithms for sales forecasting might experience a 25% improvement in forecasting accuracy compared to traditional, human-centric methods. This enhanced accuracy allows for better inventory planning, optimized staffing, and more effective capital allocation, leading directly to cost savings and increased revenues.

So how exactly does achieving a 25% improvement in forecasting accuracy happen through the employment of machine learning algorithms in sales forecasting? Here’s a breakdown of how this significant enhancement can be realized, in the context of a hypothetical retail company:

Data Integration and Cleaning

  • Comprehensive Data Collection: The first step involves aggregating sales data, inventory levels, customer interactions, and external factors such as seasonality and market trends. This data is often scattered across various departments and systems within a company, which is where having an ERP system becomes of the utmost importance.
  • Data Cleaning and Preprocessing: Before feeding the data into ML models, it must be cleaned and preprocessed. This involves handling missing values, removing outliers, and normalizing formatting to ensure consistency. The quality of data input directly impacts the accuracy of the output.

Model Selection and Training

  • Choosing the Right Model: There are various ML models available for forecasting, including regression models, decision trees, and neural networks. Each has its strengths and is suited to different types of data and forecasting needs. A retail company might experiment with several models to find the one that best fits its unique dataset and forecasting goals.
  • Training the Model: The selected model is then trained using historical sales data. This involves adjusting the model’s parameters so that it can accurately identify patterns and relationships within the data. The model learns from past sales performance to predict future sales.

Feature Engineering

  • Identifying Key Predictors: Feature engineering involves identifying which variables (or features) are most predictive of sales. In retail, this might include factors like promotional activities, seasonal trends, day of the week, and even weather conditions.
  • Incorporating External Data: Integrating external data, such as economic indicators or events, can significantly enhance the model’s accuracy. For example, anticipating a spike in sales around local events or understanding the impact of a macroeconomic downturn on consumer spending.

Continuous Learning and Optimization

  • Iterative Refinement: ML models benefit from continuous learning. As new sales data becomes available, the model is updated, allowing it to refine its predictions and adjust to changing trends.
  • Feedback Loops: Implementing feedback mechanisms where the model’s predictions are compared against actual sales outcomes can help in identifying areas for improvement, leading to further refinements in the model.

Implementation and Monitoring

  • Real-time Data Analysis: For the best results, ML models should analyze data in real-time, allowing for dynamic adjustments to sales forecasts as new information becomes available.
  • Monitoring Model Performance: Regularly monitoring the model’s performance ensures that it continues to predict sales accurately. If the model’s accuracy begins to drift, it may require retraining or adjustments.

Achieving the 25% Improvement

By following these steps, a retail company can enhance its sales forecasting accuracy significantly. The key benefits of this 25% improvement in forecasting accuracy include:

  • Better Inventory Management: With more accurate sales forecasts, the company can optimize its inventory levels, reducing both overstock and stockouts. This leads to cost savings on storage and improved sales due to better product availability.
  • Optimized Staffing: Accurate forecasts allow for more efficient staffing, ensuring that stores are adequately staffed during peak times without overspending on labor during slower periods.
  • Capital Allocation: Improved forecasting accuracy enables better decision-making regarding capital investments. Resources, like a marketing budget for example, can be allocated more effectively, prioritizing areas with the highest expected return on investment.

In summary, achieving a 25% improvement in forecasting accuracy through ML algorithms enables a retail company to make more informed decisions, optimize operational efficiencies, and ultimately, enhance profitability.

AI-Driven Financial Risk Assessment

Risk management is another area where AI excels. By analyzing historical data from both your company and from your target market at large, AI models can predict potential financial risks with greater precision. This includes credit risk, market risk, and operational risk, among others.

Benefit: Reduction in Credit Losses

One hypothetical example showcasing this benefit is a financial institution implementing AI for credit scoring. Implementing these tools can reduce credit losses by up to 30% by identifying high-risk borrowers more accurately than traditional credit scoring methods. This precision in risk assessment allows for more tailored risk pricing, improving the overall health of the loan portfolio and increasing profitability.

The traditional credit scoring methods, which often rely on a limited set of financial indicators such as credit history, income, and debt levels, can miss subtle but critical risk factors present in the broader financial behavior and external data of applicants.

Enhanced Data Analysis

AI models can incorporate a wide array of both traditional and non-traditional data sources, including transaction history, savings patterns, and even behavioral data, such as spending habits and social media activity. For instance, an AI system might analyze detailed transaction histories to identify patterns of financial stress that are not apparent from credit history alone, such as increasing frequency of late payments or reliance on short-term credit. By integrating these diverse data points, AI can uncover correlations and predict future creditworthiness with greater accuracy.

Implementation and Results

An example of this approach can be seen in the case of a major bank that implemented a machine learning-based credit scoring model. The bank was able to integrate data from mobile app usage, transaction histories, and even geographical data to identify risk factors that were previously unnoticed. For instance, the model discovered that patterns of small, frequent transactions late at night were indicative of higher risk, a nuance traditional scoring models would likely overlook. By applying these insights, the bank reduced its default rates by identifying high-risk borrowers more accurately, thereby avoiding loans that would likely lead to losses.

Dynamic Risk Pricing

Beyond identifying high-risk borrowers, AI enables dynamic risk pricing by more accurately categorizing borrowers into different risk segments. This granularity allows financial institutions to tailor their loan offerings with more precision, adjusting interest rates to better reflect the actual risk of lending. For example, borrowers who might be deemed too risky by traditional metrics (i.e. a victim of identity theft whos credit score took a massive hit) but are deemed creditworthy by AI analysis can be offered loans at rates that accurately reflect their true risk level, thus opening up new revenue streams for lenders while managing risk exposure.

Continuous Improvement through AI

Moreover, the AI models employed for credit scoring are not static; they learn and improve over time. As more data becomes available and as the models are exposed to the outcomes of their predictions (e.g., whether borrowers defaulted or not), they refine their algorithms to become even more accurate in their predictions. This continuous improvement cycle means that the 30% reduction in credit losses can be the starting point for even greater efficiency gains over time.

Fraud Detection and Prevention

AI’s capability to analyze transaction patterns in real-time significantly enhances fraud detection efforts. Traditional rule-based systems can generate high false-positive rates, leading to unnecessary investigations and customer friction.

For example, wouldn’t it be nice to not have your credit card temporarily frozen every time you made a purchase abroad?

Benefit: Decreased Fraud Losses and Improved Customer Trust

By deploying AI models that learn and adapt to new fraudulent tactics, a company could see a reduction in fraud losses by up to 40%. Additionally, the reduction in false positives enhances customer trust and satisfaction, indirectly contributing to customer retention and long-term revenue growth.

Automating Financial Operations

The automation of routine financial operations, such as accounts payable and receivable, is another area where AI contributes to financial health. AI can streamline these processes, reducing errors and freeing up staff for higher-value activities.

Benefit: Increased Operational Efficiency and Cost Savings

Businesses report up to a 50% reduction in processing times for financial operations, leading to significant labor cost savings and allowing financial teams to focus on strategic planning and analysis.

Predictive Maintenance of Financial Health

AI’s predictive capabilities extend to anticipating future financial health issues before they become problematic. By analyzing trends and patterns, AI can alert businesses to potential liquidity shortfalls or areas where operational costs are creeping up.

Benefit: Proactive Management of Financial Health

This proactive approach can help businesses adjust their strategies in real-time, avoiding financial distress and ensuring sustained profitability. Companies leveraging AI for predictive maintenance of financial health can improve their cash flow management by up to 35%, securing their operational and financial stability.

Conclusion

The integration of AI into financial data analysis and risk management offers concrete financial benefits, from enhanced forecasting accuracy and risk assessment to improved fraud detection and operational efficiency. By leveraging AI, businesses can not only mitigate risks more effectively but also uncover opportunities to optimize their financial performance, ensuring robust financial health in a competitive landscape. The future of financial management is here, and it’s powered by AI, providing businesses with the tools they need to thrive in an ever-changing economic environment.

Striven Integrates with Stripe for Seamless Payment Processing

We’re thrilled to announce an exciting development for Striven users: the integration of Stripe, a leading technology platform for online payment processing and financial solutions. This is not just a technical integration—it represents a significant leap forward in how businesses can manage their financial transactions in Striven with ease, security, and global reach.

Why Stripe?

Stripe stands at the forefront of the payment processing industry, renowned for its innovative technology that supports a myriad of payment methods. From credit and debit cards to mobile wallets and ‘buy now, pay’ later services, Stripe’s versatility is unmatched. It’s designed to fit the needs of businesses of all sizes, anywhere in the world, supporting over 135 currencies and available in more than 45 countries.

Like Striven, Stripe offers its users transparent and straightforward pricing models. Learn more about Stripe’s pricing model right here.

The Impact on Striven Users

For businesses leveraging Striven’s comprehensive business management platform, the integration with Stripe means a seamless, secure, and efficient payment processing experience for both you and your customers. Here are some of the key benefits:

  • Global Reach with Local Comfort: Accept payments in over 135 currencies, allowing you to expand your market reach without worrying about currency barriers.
  • Diverse Payment Options: Meet your customers wherever they are, offering the payment methods they prefer and trust, whether it be credit cards, debit cards, or mobile wallets.
  • Streamlined Accounting: Automatic recording and documentation of payments within Striven, simplifying your accounting processes and ensuring accuracy.
  • Transparent Pricing: Stripe offers straightforward and transparent pricing, ensuring businesses can plan and budget with confidence, without fear of hidden fees or complex pricing structures.

Looking Ahead

This integration underscores our commitment to providing tools that not only enhance the ease of financial management within Striven, but also empower businesses to grow and compete on a global scale. The collaboration between Striven and Stripe is a testament to our dedication to your business’s success, ensuring that managing your finances is as effortless as it is secure.

We’re excited for our users to experience the benefits of this integration, furthering our mission to support businesses in their growth and operational excellence. For more detailed information on how to leverage this integration to its full potential, we encourage you to visit Striven’s Stripe Integration Guide.

Striven Named Among Top ERP Software in 2024 – Software Advice

In a recent report, SoftwareAdvice, a leading software review site owned by Gartner, named Striven in its flagship report covering the top-rated and most affordable ERP software solutions in 2024.

This list of software solutions was created in large part by user feedback, as well as the affordability of each system. Striven was ranked #2 on this list behind only project management software Monday.com.

*Note that while Striven does not have a mobile app, it is a webapp that is easily usable on any mobile device.

Here is what the SoftwareAdvice analytics team had to say about Striven:

“Striven’s comprehensive ERP capabilities make it suitable for businesses looking to give customers, clients, and vendors the flexibility to manage their data. They can add or update information and download required documents at their convenience. The tool allows users to raise support tickets for their queries and concerns. Users can raise tailored invoices directly from the platform and share them with concerned parties via email or dedicated portals.”

Here’s one of our customer reviews that was factored into Striven’s placement on this list:

I like the collaboration tool it was really very useful to keep everyone on the same communication channel. I can share documents, discuss ideas and solve problems very quickly.” ~Ana

Want to read more? You can check out the original article right here: 7 Top-Rated Affordable ERP Software

Striven’s Winter 2024 Triumph: G2.com’s ERP Standouts Unveiled

We are thrilled to share that Striven has once again demonstrated its prominence in the ERP sector, marking a significant achievement in the Winter 2024 ERP Awards on G2.com, a renowned platform for business software evaluations. This recognition is a reflection of not only our groundbreaking technology but also the commitment of our devoted team and the continuous support from our valued customers.

G2.com, every quarter, shines a spotlight on the industry’s leading solutions, as voted by the most crucial judges: our users.

Let’s celebrate our remarkable accomplishments for Winter 2024:

  1. Best Results, ERP Winter 2024: Striven leads the way, showcasing our exceptional outcomes in the ERP domain.
  2. Small Business High Performer, Americas, ERP Winter 2024: In the small business category, we’ve outperformed many, attaining a prestigious ranking.
  3. Momentum Leader, ERP Winter 2024: Demonstrating our dynamic progress in the ERP field, we’ve secured a leading position.
  4. High Performer, Americas, ERP Winter 2024: Our performance in the Americas region has been recognized, earning us a top spot.
  5. Mid-Market High Performer, Americas, ERP Winter 2024: Among mid-market players in the Americas, Striven has emerged as a high performer.
  6. High Performer Mid-Market, ERP Winter 2024: In the mid-market segment, our performance has been outstanding, securing us a notable position.
  7. High Performer, ERP Winter 2024: Across the board, Striven has been acknowledged as a high performer in the ERP landscape.

These accolades on G2.com directly mirror the Striven team’s perseverance, innovation, and hard work. More crucially, they highlight the invaluable input, confidence, and collaboration from our user base and customers. Your reviews, testimonials, and constructive criticisms have been pivotal in our incredible journey.

We are dedicated to continually redefining the capabilities of an ERP system. The road ahead is filled with more innovation, enhanced functionalities, and increased support to optimize your business operations. Anticipate more exciting updates, features, and advancements as we forge ahead together.

To our customers, partners, and the entire Striven family – your involvement in this remarkable journey is greatly appreciated. Here’s to many more milestones, triumphs, and mutual growth!